Int J CARS (2017) 12:1959-1970
DOI 10.1007/s11548-017-1531-7

@ CrossMark

ORIGINAL ARTICLE

Validation workflow for a clinical Bayesian network model
in multidisciplinary decision making in head and neck oncology

treatment

Mario A. Cypko! - Matthaeus Stoehr? - Marcin Kozniewski>* -
Marek J. Druzdzel>* . Andreas Dietz? - Leonard Berliner’ - Heinz U. Lemke!

Received: 1 September 2016 / Accepted: 25 January 2017 / Published online: 15 February 2017

© CARS 2017

Abstract

Purpose Oncological treatment is being increasingly com-
plex, and therefore, decision making in multidisciplinary
teams is becoming the key activity in the clinical pathways.
The increased complexity is related to the number and vari-
ability of possible treatment decisions that may be relevant
to a patient. In this paper, we describe validation of a multi-
disciplinary cancer treatment decision in the clinical domain
of head and neck oncology.

Method Probabilistic graphical models and corresponding
inference algorithms, in the form of Bayesian networks, can
support complex decision-making processes by providing
a mathematically reproducible and transparent advice. The
quality of BN-based advice depends on the quality of the
model. Therefore, it is vital to validate the model before it is
applied in practice.

Results  For an example BN subnetwork of laryngeal can-
cer with 303 variables, we evaluated 66 patient records. To
validate the model on this dataset, a validation workflow was
applied in combination with quantitative and qualitative anal-
yses. In the subsequent analyses, we observed four sources
of imprecise predictions: incorrect data, incomplete patient
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data, outvoting relevant observations, and incorrect model.
Finally, the four problems were solved by modifying the data
and the model.

Conclusion The presented validation effort is related to the
model complexity. For simpler models, the validation work-
flow is the same, although it may require fewer validation
methods. The validation success is related to the model’s
well-founded knowledge base. The remaining laryngeal can-
cer model may disclose additional sources of imprecise
predictions.

Keywords Therapy decision support system - Bayesian
network - Model validation - Laryngeal cancer - Head and
neck oncology - Multidisciplinary tumor board

Introduction

A Therapy Decision Support System (TDSS) based on
Bayesian networks (BN) can support multidisciplinary teams
in making patient-specific therapy decisions. However, the
quality of BN-based advice depends on the quality of the
model. Therefore, it is vital to validate the model before it is
applied in practice. In this paper, we describe a quantitative
and qualitative validation workflow for a multidisciplinary
cancer treatment decision in the clinical domain of head and
neck oncology.

Finding the best patient-specific treatment decisions for
a complex disease requires processing of large amounts of
information originating from multiple sources. The ability of
the human mind to handle complex and uncertain data is lim-
ited [11]. Medical experts typically deal with complexity by
resorting heuristic methods focusing on a more manageable
and comprehensible subset of patient information. This selec-
tion varies with experts training, specialization, background
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knowledge, and experience. It may result in underestimation
or disregard of certain variables and, thus, potentially lead to
sub-optimal treatment decisions [11,13].

For a patient with laryngeal cancer, a treatment decision by
a multidisciplinary expert team, also known as tumor board,
should be standard in certified cancer centers. The goal is to
adjust treatment standards to complex individual factors and
to check whether it is possible to recruit the patient for clinical
trials. The increasing amount of available medical knowledge
and patient-specific information support this goal. They also
promote a diagnostic and therapeutic variety that needs to be
considered.

To support this complex decision-making process in a spe-
cific clinical setting, the Innovation Center for Computer
Assisted Surgery (ICCAS) in Leipzig, Germany, is devel-
oping a clinical Therapy Decision Support System (TDSS)
[4]. The TDSS is part of the Kernel for Workflow, Knowl-
edge, and Decision Management in a Medical Information
and Model Management System or MIMMS (see Fig. 1).
The MIMMS allows for integration of multiple sources of
data and information to facilitate Integrated (model-based)
Patient Care [12].

The first clinical application to demonstrate this data inte-
gration is a treatment decision model of laryngeal cancer
using a probabilistic graphical model, here specifically a
BN [19]. A BN is able to combine a variety of information
sources, to offer flexible and transparent decision model-

ing, and to provide mathematically accurate and reproducible
recommendations (e.g., therapy decision, outcome, comor-
bidities, or quality of life) [17].

Because reasoning with BNs is based on mathematics and,
hence, is theoretically correct, the quality of a model-based
advice with BNs depends on the quality of the model. There-
fore, validation of a BN model is the most important task
after modeling and before integration of the BN into active
use. Validation can be performed by a machine learning tech-
nique known as cross-validation on a data set. In case of too
little data and when data are difficult to gather, expert-based
validation is a necessity. An expert validation is subjective
compared to data-based validation, but one could argue that
it is of higher quality because the expert can study relations
between variables, subnetworks, and the model behavior.
However, in the BN community there are only a few reports
of expert-based validation, which are conceptual or only gen-
erally described [16,18], and are all of diagnostic models.

This paper describes the construction and validation of
a treatment decision model using expert knowledge sup-
ported by results from five established computer-based
validation methods: accuracy, confusion matrix, receiver
operating characteristic (ROC) curve, area under the ROC
curve (AUC), and calibration curve.

The remainder of this paper is structured as follows.
“Bayesian networks for multidisciplinary treatment deci-
sions” section introduces Bayesian networks as well as
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Fig. 1 Concept of a TDSS based on a generic BN [4]
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our meta-structure for modeling multidisciplinary treatment
decisions. “The TNM staging model of laryngeal cancer”
section presents TNM staging, an appropriate subnetwork
from ICCASs laryngeal cancer model for testing the val-
idation methods. “Validation of the TNM model” section
describes our validation workflow using established data- and
expert-based methods. Finally, “Discussion and conclusion”
section presents a general discussion and conclusion on the
topic of validating complex BN models in the clinical domain
of treatment decisions.

Bayesian networks for multidisciplinary treatment
decisions

A BN is a probabilistic graphical model that represents a
directed acyclic graph of random variables and their condi-
tional probability distributions [17]. Specifically, a graph and
the associated CPTs represent the joint probability distribu-
tion over its variables.

Each variable has a set of states, which may be Boolean
valued or more detailed. Direct causal dependencies connect
two directly dependent variables by a directed edge, from
a parent node to its child node. The relationship between a
node and its parents is quantified by a conditional probabil-
ity distribution, described in a conditional probability table
(CPT). In case of a variable without parents, it requires an a
priori probability distribution. Once a model is created, the
observations are inserted into the model, and an inference
algorithm calculates the likelihood for each state of unob-
served variables.

Bayesian networks have become accepted to support
transparent and comprehensible clinical decision making. In
the clinical context, variables may describe, e.g., diseases,
symptoms, complications, and quality of life. For a variable
representing the primary laryngeal cancer, states can simply
be true/false, or be more specific, from TO to T4b. In general,
graphical models should reflect the causal structure of the
domain, where the grade of detail should relate to the specific
type of decision [6]. When multiple experts initially disagree
about the model structure, they come to an agreement after
some discussion [8]. CPTs should reflect knowledge from
medical evidence; their parameters may be learned from data
automatically, or evaluated by domain experts manually.

In case of treatment decision making, the model needs to
be very comprehensive in order to reflect its complexity. We
consider three types of variables to achieve a model struc-
ture that enables modeling multiple examination methods in
a suitable way (see Fig. 2). The variable types are: patient sit-
uation (PN, orange nodes), examination result (EN, yellow
nodes), and decision (DN, pink nodes). Directed edges rep-
resent valid causal dependencies between the three variable
types. Nodes of the type examination results and decisions are

Fig. 2 Direct dependencies
between three types of
variables: patient situation (PN),
examination results (EN), and
decisions (DN)

‘
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observable, and the patient situation is unobservable. Exami-
nation methods have different degrees of accuracy, expressed
by their CPTs.

This structure (1) allows for integrating multiple exami-
nation methods for the same type of patient information, (2)
is extendable with a minimum effort in case of newly intro-
duced medical tests or examinations, and (3) minimizes the
number of direct dependencies, because examination nodes
and decision nodes are only dependent indirectly.

The TNM staging model of laryngeal cancer

In case of laryngeal cancer, patient-specific treatment deci-
sions increase both, survival rate and the quality of life.
Laryngeal cancer has a worldwide annual incidence of
approximately 157,000 cases with a mortality rate of around
53% [9]. However, a slight decline in mortality is observed,
which results from earlier diagnoses and optimizing inte-
grated treatment approaches [1]. In addition to the survival
benefits, more attention is paid to patients’ quality of life
and enhancement of functional outcomes [10]. Clinical treat-
ment guidelines in head and neck oncology, such as the
National Comprehensive Cancer Network on head and neck
cancers [15], provide evidence-based recommendations for
the treatment of laryngeal cancer based on the TNM staging
system (see “Appendix” section). The diagnostic evaluation
and staging of laryngeal cancer prior to treatment typically
merge into a clinical TNM staging (cTNM) that combines
data from physical examination, endoscopy, and diagnostic
imaging. Also, in case of a surgical treatment, a pathological
TNM stage (pTNM) is defined based on (histo) pathologi-
cal examinations. A pTNM is considered to be more reliable
compared to a cTNM.

In collaboration between the ICCAS and the School of
Information Sciences, University of Pittsburgh, for the val-
idation analysis, we first selected a subset of the laryngeal
cancer model which describes the TNM staging. This subnet-
work has a sufficient complexity, is relatively well described
by clinical guidelines, has an adequate evidence base, and
highly impacts the patient-specific treatment decision.

The laryngeal cancer model was constructed by two
ICCAS experts in a close collaboration; one was a computer
scientist and the other a head and neck surgeon. Their work
was supported by expert clinicians from the University Hos-
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Fig. 3 The TNM staging subnetwork from the treatment decision model of laryngeal cancer

pital Leipzig (radiologists, clinical oncologists, surgeons,
and radiotherapists).

The laryngeal cancer model includes variables describing
the tumor physical extension (according to TNM stag-
ing), comorbidities, genetic and molecular factors, therapy
options, risk factors, complications, and quality of life. The
model covers the variables relevant to the tumor board, and
their causal and probabilistic relationships. It encodes knowl-
edge derived from medical guidelines and study data, as well
as practical recommendations from expert clinicians in dif-
ferent fields. In total, the model consists of approximately
1100 variables (nodes) with more than 1300 dependencies
(edges) and is described by over 1.3 million numerical param-
eters. Figure 3 shows the TNM staging subnetwork. In total,
this subnetwork consists of 303 variables with 334 dependen-
cies and is described by 79,815 numerical parameters. The
subnetwork’s parameters are assessed by a clinician using
ICCAS’s CPT Web tool [2], which translates mathematical
equations into a natural language questionnaire. The patient
dataset consists of 66 complete patient records laryngeal
cancer cases. The patient records provide an average of 78
information items (ranging between 36 and 154).

Validation of the TNM model

The quality of a model can be validated by two basic
approaches: quantitative and qualitative.

With the quantitative evaluation, an algorithm calculates
the model accuracy automatically. For this, patient records
are mandatory. Results express the model quality numerically
by means of accuracy, sensitivity, specificity, etc. The number
of patient records should be sufficiently large compared to the
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model size. Among the number of records, also the number
of patient information per record has to be considered.

In practice, usually fewer cases are available, which
decreases the reliability of the evaluation results. With the
qualitative approach, each patient record is studied individu-
ally and interactively by a domain expert. This qualitative
study is time consuming for the expert, but it provides
an opportunity to check patient information in case of the
model’s incorrect behavior and modify the model directly
[16]. In our case, the number of records was too small to
obtain reliable results for the quantitative method. Please
recall that we have 66 patient records and 303 model vari-
ables. However, quantitative evaluation provided misguiding
predictions, which were also of interest in the qualitative
studies. We applied five established quantitative methods
on the TNM model given the small dataset of 66 patient
records. Based on the validation results, we performed a
qualitative study starting with the resulting misguiding pre-
dictions and, thereby, detected four cases of incorrect model
predictions. We repeated the quantitative and qualitative val-
idation in four major validation cycles, solving one type of
issue per cycle. For validation, we used the GeNIe! soft-
ware that supports the quantitative validation methods and
tools for the qualitative validation [7]. The quantitative and
qualitative validation was carried out by the clinical domain
expert and the computer scientist who also built the model.
The clinical domain expert evaluated the model behavior
and validation results, and recommended modifications. The
computer scientist operated with GeNle, interpreted results
from quantitative validation, and ensured the correct model

! Available free of charge for academic research and teaching use at
http://bayesfusion.com/.
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structure after modifications. In total, the presented valida-
tion required two intensive weeks of team work.

The following sections describe acceptable model predic-
tions in the context of clinical treatment, present a validation
workflow, introduce the five quantitative validation meth-
ods, describe the qualitative validation, and result from single
modifications.

Predictions in the context of a clinical treatment
decision

A prediction’s acceptance depends on the decision context. A
therapy decision as compared to a disease diagnosis may have
a different understanding of an acceptable or unacceptable
prediction.

For diagnostic models, a model’s prediction may be still
valuable if the correct answer (as shown in the patient record)
is the second-, third-, or fourth-best prediction [16]. Fur-
thermore, a prediction may also be valuable if the state’s
probability reaches a predefined probability threshold [6]. In
case of cancer, for example, one might want to raise an alarm
even if the probability of cancer reaches as little as 0.1.

We studied both variants of valuable predictions, separate
and in combination, in the context of a clinical treatment deci-
sion. From this study, a correct answer in the second, third,
and fourth probable state may be valuable in case its prob-
ability is also close to the most probable state. In contrast,
this correct answer is unacceptable in case its probability is
significantly lower as compared to the most probable pre-
diction. In special cases, we call a model’s node predictions
misguiding, when an incorrectly predicted state has a sig-
nificantly higher probability as compared to the remaining
states; in clinical practice, this high confidence may exclude
the consideration of other options.

We summarize the terms high confidence, uncertainty,
acceptable, unacceptable, and misguiding for the following
paragraphs:

(a) A model gives a high confidence answer about a node
when the probability of the predicted state has a high
probability compared to the remaining states.

(b) A model gives an uncertain answer about a node when
the predicted state has a probability close to the proba-
bility of another state.

(c) An unpredicted correct answer is acceptable in case its
probability is close to the probability of the predicted
state.

(d) An unpredicted correct answer is unacceptable in case
its probability is significantly lower than the probability
of the predicted state.

(e) A model behavior is misguiding in case a wrong pre-
diction is a certain answer.

1. Quantitative validation

1.1. Accuracy
1.2. ROC
1.3. Confusion Matrix

1.

2. Qualitative validation

2.1. Patient-Record Validation
2.2. Submodel Validation

) 1.

3. Modification

3.1. Patient Data modification
3.2. Graph modification
3.3. CPT Modification

Fig. 4 Validation and modification workflow

Validation and modification workflow

The following describes the validation effort for the TNM
model in more detail by a validation workflow, with an
ordered list of applied methods. The process of model val-
idation and modification consists of three steps, presented
in Fig. 4; from (1) the quantitative validation through (2)
the qualitative validation to (3) the modification, and back
through (2) the qualitative validation to (1) the quantitative
validation.

Quantitative validation is based on all available patient
cases to quickly overview the model quality, and directly
identify model deficiencies. One ranks identified model defi-
ciencies from misguiding to acceptable predictions. Begin-
ning with the misguiding predictions, from the patient cases
a subset is selected that relates to exactly one of the identi-
fied model deficiencies. Based on the patient case subset, the
qualitative validation is applied to study the model behavior
and identify sources for the model’s incorrect predictions.
Sources of errors can occur in both, the model and the data.
Given identified error sources, modifications are performed
to solve the problem with minimum of required effort to
avoid bias influences. Modifications are reviewed by repeat-
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ing the qualitative validation. With a positive model behavior
for the specific patient case subset, next, the quantitative val-
idation is repeated with all patient cases to test whether the
modifications develop other incorrect predictions. If also the
quantitative validation is successful and our modifications are
not developing new avoidable deficiencies, the validation is
continued for the remaining model deficiencies discovered
earlier. Otherwise, in case of wrong model behavior at the
qualitative validation or identified new avoidable deficien-
cies at the quantitative validation, previous validation steps
in order of the workflow cycle must be repeated until the
problemis solved. Unavoidable deficiencies may appear after
modifications, which existed before but could not be recog-
nized given previous model deficiencies. In case of a new
unavoidable deficiency, the new deficiency will be processed
in a separate validation and modification cycle, and the cur-
rent validation cycle is continued.

For validating and modifying a model, a selection of
applied methods is necessary. We present the methods that we
used in our work in Fig. 4. Quantitative validation required
three of the five methods: accuracy, ROC, and the confu-
sion matrix. Qualitative validation included testing the model
behavior on patient records, followed by studying a single
node or a subnetwork in more detail. Modified are first patient
data, then the graph structure, and, finally, the CPT param-
eters. More details about specific intentions of selecting and
ordering methods are described in the following sections.

Quantitative validation methods

Quantitative methods calculate a model’s ability to predict
values. More specific, a subset of variables called target
nodes must be selected from the model. The methods exclude
patient information from the test data that represent states of
the target nodes, and check if the model is able to predict these
values. For example, in a diagnostic setting target nodes are
typically the disease nodes.

For the TNM model validation, we used five existing
methods: accuracy, confusion matrix, ROC curve, AUC, and
calibration curve. All methods were executed automatically
using the GeNle software. For the validation, we used the
collected 66 patient records and selected as target nodes the
variables that determine the TNM stages (T, N, and M state).
We note that the number of collected records for a state was
not balanced. For only one state per target node, we had more
than 25 records; see MO, NO, and T4a. For the other states,
we had on average of 7 records, for the states 70, Tis, and
N2a we had no records at all.

Accuracy

The method accuracy [14] counts a model’s correct predic-
tions. Typically, a prediction is the state with the highest
probability. If the prediction is equal to the patient informa-
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tion, it counts as correct or a hit. Accuracy is expressed by
the ratio of the number of correctly predicted values to the
number of all records.

The TNM model accuracy was measured in three variants,
(1) considering only correct answers with highest probability,
and (2) considering also correct answers with the second- and
third-best predictions, and (3) accepting these second- and
third-best predictions only if the distance to the most probable
answer is <32%. The 32% was the median of probabilities
from acceptable and unacceptable predictions studying cases
with correct answers in the second- and third-best prediction.
Predictions were valued as acceptable and unacceptable by
the domain expert.

Using the GeNle software, we calculated the accuracy for
each state of the three target nodes, T, N, and M state. From
the states’ accuracy, the software added up a total accuracy
for each target node, and one accuracy for all target nodes.
Ratios were denoted in both, a percentage and a number.
However, only the most probable state predictions counted,
and therefore, the second- and third-best predictions as well
as the distance were calculated separately.

Confusion matrix

In case a target node has more than two states, the method
accuracy summarizes the wrong predictions in one number.
The confusion matrix [14] enables to study the details of the
wrong predictions.

Confusion matrix creates for every target node a sepa-
rate 2D matrix, with a node’s states in rows that represent
the correct answer (from patient data) against its states in
columns that represent a model’s predictions. The diago-
nal line in the matrix presents the correct predictions (true
positives; the remaining matrix fields present incorrect pre-
dictions. The incorrect predictions in a state’s row presents in
numbers the model’s inability to predict this state correctly
(false negatives). The incorrect predictions in a state’s col-
umn present numerically the model’s inability to distinguish
other states from this one (false positives). For this state, the
remaining incorrect predictions outside its row and column
are the true positive. From these columns, furthermore, we
see the distance between wrong predictions and the expected
answer.

ROC curve and AUC

With accuracy and confusion matrix, we express a model’s
ability to distinguish correct from incorrect predictions.
Receiver Operating Characteristic (ROC) curve [20] visu-
alizes this ability for each state separately by a curve in
a 2D Cartesian coordinate system, with sensitivity against
specificity. For a specific state, the sensitivity defines the true
positives and the specificity defines false positives. The area
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under the ROC curve summarizes a ROC curve in one num-
ber running between 0.5 and 1.0, although loosing details
about the curve’s behavior.

Calibration curve

A calibration curve [5] expresses a model’s ability to produce
precise probabilities. The previous three methods (accuracy,
confusion matrix, and ROC curve) enumerate the correct and
incorrect predictions, but leave out the predictions’ proba-
bilities. The calibration curve is plotted in a 2D Cartesian
coordinate system with probability estimates against the fre-
quencies observed in the data. The resulting curve provides
information about over- or underestimated predictions, and
the distance between predicted and expected probabilities.
The best case, the curve, is a straight diagonal line from
(0,0) to (1,1). Below this line indicates an underestimation,
and above this line an overestimation. Both underestimation
and overestimation may be critical for patient outcomes; for
example, an underestimation would attenuate the stage of
cancer and could lead to undertreatment; an overestimation
of the cancer stage may lead to an overtreatment or, in worst
case, to a shift of treatment intent toward palliation, whereas
a patient may survive in a curative intent. Usually, in a well-
calibrated model, the higher the probabilities, the closer its
calibration curve approaches the diagonal line, indicating that
the model is more confident of predictions with higher prob-
abilities. Therefore, from a curve of a state, we can discover
a probability threshold of confident predictions; a predicted
state with a probability above the threshold is confident to be
correct.

The presented quantitative methods are all different in
their informative value by means of a model’s overview,
details, and behavior. For the qualitative validation, we
needed accuracy, then ROC curves, and the confusion matrix.
AUC and calibration curve we used only to compare the ini-
tial and final model quality. The calibration curve is valuable
for decision support and may have an informative value for
parameter calibration. However, in this study we aimed to
find and solve issues for incorrect predictions. To avoid over-
fitting, we did not calibrate parameters beyond this aim. The
AUC results were less relevant for the qualitative validation
given the ROC curves. We used accuracy for two reasons: (1)
to overview the model predictions in order to select states for
more detailed studies using ROC and confusion matrix and
(2) to overview changes of model predictions after modifica-
tions. The ROC curve led to an understanding of the model’s
classification ability, unspecific in concrete predictions but
quick and intuitive. From these curves, we selected states
for specific details using the confusion matrix. The confu-
sion matrix gave us the most relevant details about potential
misguiding predictions.

Qualitative validation methods

To analyze the model qualitatively, experts may study both,
the model behavior from patient records and direct influences
through model interaction. Incorrect model predictions in the
early phases of validation often indicate that the model needs
some adjustment. However, a difference between model out-
put and expert intuition is an opportunity that may lead to
important insights on the part of the expert.

These studies required software with a suitable graphi-
cal user interface (GUI). We studied the model using the 66
patient records and interacted with subnetwork in case of
incorrect model behavior. The results from the quantitative
validation we used in order to start this qualitative validation
from the misguiding predictions, because model modifica-
tion also influenced the classification of the remaining TNM
states.

The following sections describe a graphical user interface
with functions that were important for the model interaction
and validation, the patient record-based validation, the sub-
network validation, and results from model modification.

Interface and functions for expert validation

For the qualitative validation, we used GeNle [7]. A screen-
shot of GeNle’s GUI is presented in Fig. 5. GeNle supports
the qualitative validation with its basic features and advanced
BN functions. Basic features support interaction with both,
the comprehensive model and the numerous patient records.
For comprehensive models, an alphabetically ordered list of
variables allows for a quick search, as well as to zoom the
graph in and out, and to move across the graph structure
allowing for studying subnetwork. For the patient records, a
case management enables to select, modify, and save cases.
Furthermore, the software updates the model inference as
observations are entered or changed. Extended BN functions
improve the graphical analysis. Three functions for highlight-
ing are: strength of connections between variables based on
CPTs, sensitivity analysis of target nodes based on calculated
inference, and value of information based on cross-entropy
which calculates the diagnostic value of observations sepa-
rately for each state of target nodes.

Patient record-based model validation

An analysis using patient records allows a domain expert
for studying the model behavior. From a record’s number
and distribution of patient information, this study gives the
expert also insight into the model’s reliability as a TDSS.
For the study of patient records, we processed the 66 laryn-
geal cancer cases one by one by loading a case into the model
and analyzing the predictions and influences. In cases of
incorrect model predictions, the clinician studied the graph
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Fig. 5 Screenshot from the GeNle software, with (@) the model, () a list of all variables, (c¢) functionalities to study and modify the model, and

(d) a case manager

for finding the relevant issues. Specifically, he studied, firstly,
the results of GeNle’s advanced BN features, and secondly,
given these results, he went through the graph structure and
studied the observations and model predictions.

Subnetwork validation

In subnetwork validation, the domain expert studies direct
influences by interacting with usually small subnetworks. In
detail, the expert simulates combinations of possible obser-
vations based on personal knowledge and experiences.

In this study, the clinician interacted with a node simu-
lating observations in the node’s Markov blankets. A node’s
Markov blanked [17] consists of node’s neighboring nodes.
When all nodes in a node’s Markov blanked are observed, the
node becomes independent of the remaining nodes in the net-
work. Specifically, the clinicians started studying the network
with the T, N, and M state nodes by simulating observations
in their Markov blankets, and extended their study to Markov
blankets of the neighboring nodes with incorrect influences.

Results and modifications

From the validation, we observed four problems of incor-
rect model predictions: (P7) incorrect data, (P2) incomplete
patient data, (P3) outvoting relevant observations, and (P4)
incorrect model. We decided to solve one problem at the
time and test a problem’s influence on the model predictions.

@ Springer

Therefore, we solved the four problems by four modifica-
tions: (M1) re-staging the patients, (M2) including negative
findings, (M3) adding fuzzy values, and (M4) modifying the
model. Table 1 shows the accuracies of the T, N, and M states
and the total accuracy, before and after the modifications.
Finally, we present probabilities from T states predictions
for analyzing the predictions’ certainty (see Fig. 6).

Initially, the model accuracy based on the 66 patient cases
was 76%. The patient record-based model study enabled to
identify the first three problems for incorrect predictions.
First, the expert (P1) identified 28 incorrect T, N, or M
stagings in the patient data. Using retrospective data, the
reasons for the mismatches were incomprehensible. The
experts assumed that information may have been lost, was
not updated after new examinations, or possibly of a wrong
TNM staging. Finally, the clinician confirmed, after (M1) re-
staging given the available findings, the model inferred the
TNM stages in all 28 cases correctly. After correcting TNM
stagings, the model accuracy increased to 89%.

Problem P2 was caused by the fact that, in general, records
consist only of positive findings and unexpected negative
findings. Knowing the performed examination methods and
examined body areas the clinician derived, as it is typically
done in practice, the additional negative findings. Without
these negative findings, the inference is performed on the
CPTs, which may not fit the specific patient. We (M2) added
the derived information to the patient records, which cor-
rected 8% of the patient cases. However, the overall accuracy
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Table 1 Accuracies of the T, N,
and M states and in total, before
and after the modifications of

Initial test

Re-staging
patients (M1)

Model modifica-
tion (M1 to M4)

Including negative
findings (M1 and

Adding fuzzy val-
ues (M1 to M3)

MI to M4 M2)
Tstate  0.47 0.74 0.77 0.91 1.0
Nstate  0.82 0.94 0.94 1.0 1.0
Mstate 1.0 1.0 1.0 1.0 1.0
Total 0.76 0.89 0.9 0.97 1.0
Fig. 6 A plot of the T states, |
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increased only by 1% (see Table 1), because the modification
M2 led also to problem P3 which impaired previously cor-
rect predictions. Problem P3 was an outvoting of results from
reliable examination methods by a larger number of incor-
rect results from less reliable examination methods. Using
GeNle, the clinician was able to (M3) decrease the influence
of some observations by fuzzy values, which increased the
accuracy by 7% to a total of 97%.

Additionally to the patient record study, the subnetwork
study discovered problem P4: a problem with the model
detail. A variable was missing; therefore, we (M+4) added one
node and adjusted dependencies as well as edited affected
CPT parameters of the new node and its children. In Fig. 3,
the added node is highlighted with a circle. Finally, the total
accuracy increased to 100% and the AUC of each state was
at least 98%.

For a TDSS, besides the high model accuracy, also a high
prediction confidence may be desired.

The T state required the most modification effort; there-
fore, we selected this variable to present the predictions’
probability values after the last modification. Figure 6 shows
a plot of T state predictions from each patient record. In
this three-dimensional graph, T states are plotted against the
amount of patient information and calculated probability. The

T stage # observations

probabilities reached from 36 to 97%, with an average of
71%. In general, the model predicted higher T states with
more confidence. The amount of patient information was not
decisive compared to the prediction confidence and T state.

Discussion and conclusion

This paper described several critically important method-
ologies for validating the design and structure of a TDSS
based on a comprehensive BN. The utilized validation meth-
ods are well known in the machine learning community for
validating models and supporting their adjustment. For both,
validation and adjustment, enough test data should be made
available. However, in the quantitative validation, it could be
shown that even with a small set of patient records, issues
can be discovered that would be faced in clinical practice,
e.g., the problem with missing negative findings.

In general, for expert treatment models, the workflow
described in “Validation and modification workflow” section
is a valuable procedure to identify issues and find solutions.
Quantitative validation provides both, an overview of model
quality and details about wrongly predicted states. In turn, a
qualitative validation enables to find causes of incorrect pre-
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dictions as well as corresponding solutions. The presented
validation effort is related to the model complexity. Multi-
disciplinary decision models of a similar large grade of detail
will need the same validation effort independently of the rep-
resented domain. For less complex models, the validation
cycle is the same, but may be simplified by using fewer meth-
ods in the qualitative validation, and correcting more issues
in the same cycle. The validation workflow based on patient
records and on subnetwork is always needed, but may be
differently focused. Simpler models may have more patient
records available and need fewer subnetwork studies.

The validation of multidisciplinary treatment models
poses new challenges in data collection, modeling, and vali-
dation. These challenges should be tackled first with a clear
decision as regards the role of TNM staging, which is accu-
rately defined and well-founded. The selection of variables,
setting dependencies between these variables, and also the
CPT were comparatively simple, and therefore, the model
was achieved with a high accuracy. This simpler subnetwork
helped to identify some basic problems with modeling and
validation (M1 to M4 in “Results and modifications” section),
and should precede the validation of the more comprehensive
laryngeal cancer model.

The results are promising for the clinical integration of the
TNM subnetwork and for further validations of the remain-
ing model. In case of correct model and patient data, the
uncertainty in predictions is an important feedback for clin-
icians. The model’s uncertainty may be caused by missing
relevant examinations and unusual patient cases. In treatment
decisions, it is common that more than one treatment option
is possible. While complete certainty is often unachievable
in clinical decision making, a BN provides the clinician
with more certainty about the remaining uncertainty. We
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encourage expert validation but also point out the need for
collaborative work between clinician and computer scientist
to overcome the intensive validation time. The computer sci-
entist was required for activities which, in principle, could be
completely replaced by a modeling tool that is more adapted
to clinicians understanding. These activities include: man-
aging the software, interpreting the quantitative validation
results, and ensuring the correct model structure with modi-
fications.

Future developments should focus on tools to support
both, BN modeling and validation [3]. A first successfully
developed tool is for the assessment of conditional proba-
bilities [2]. It is important that a validation tool follows the
presented validation workflow and includes the validation
methods in an abstract way that is adapted to clinicians intu-
itive understanding.

Acknowledgements The authors would like to thank J. Gaebel, Y.
Deng, S. Oeltze-Jafra, and A. Onisko for their valuable comments and
suggestions that lead to improvements in the quality of the paper.

Funding ICCAS is funded by the German Federal Ministry of Educa-

tion and Research (BMBF). The statements made herein are solely the
responsibility of the authors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval For this type of study, formal consent is not required.
This article does not contain any studies with human participants or

animals performed by any of the authors.

Informed consent This articles does not contain patient information.



Int J CARS (2017) 12:1959-1970 1969

Appendix: TNM staging system for the Larynx [15]

Primary tumor (T)

D¢
TO
Tis
T1

Tla
T1b
T2

T3

T4a

T4b

Primary tumor cannot be assessed

No evidence of primary tumor

Carcinoma in situ

Tumor <2 cm in greatest dimension

Supraglottis: Tumor limited to one subsite of supraglottis with normal vocal cord mobility

Glottis: Tumor limited to the vocal cord(s) (may involve anterior or posterior commissure), with normal mobility

Subglottis: Tumor limited to the subglottis

Glottis: Tumor limited to 1 vocal cord

Glottis: Tumor involves both vocal cords

Tumor >2 cm but not more than 4 cm in greatest dimension

Supraglottis: Tumor invades mucosa of more than one adjacent subsite of supraglottis or glottis or region outside the
supraglottis, without fixation of the larynx

Glottis: Tumor extends to the supraglottis and/or subglottis, and/or with impaired vocal cord mobility

Subglottis: Tumor extends to vocal cord(s), with normal or impaired mobility

Tumor >4 cm in greatest dimension

Supraglottis: Tumor limited to the larynx, with vocal cord fixation, and/or invades any of the following: postcricoid area,
preepiglottic space, paraglottic space, and/or inner cortex of the thyroid cartilage

Glottis: Tumor limited to the larynx with vocal cord fixation and/or invasion of the paraglottic space and/or inner cortex of
the thyroid cartilage

Subglottis: Tumor limited to the larynx, with vocal cord fixation

Moderately advanced, local disease
Lip—Tumor invades through cortical bone, inferior alveolar nerve, floor of mouth, or skin of face
Oral cavity—Tumor invades adjacent structures

Supraglottis, Glottis and Subglottis: Moderately advanced, local disease
Tumor invades the outer cortex of the thyroid cartilage or through the thyroid cartilage and/or invades tissues beyond the
larynx

Very advanced, local disease
Tumor invades masticator space, pterygoid plates, or skull base and/or encases internal carotid artery

Supraglottis, Glottis and Subglottis: Very advanced, local disease
Tumor invades prevertebral space, encases carotid artery, or invades mediastinal structures

Regional lymph nodes (N)

NX
NO
NI
N2

N2a
N2b
N2c¢
N3

Regional nodes cannot be assessed

No regional lymph node metastasis

Metastasis in a single ipsilateral lymph node 3 cm in greatest dimension

Metastasis in a single ipsilateral lymph node >3 cm but not more than 6 cm in greatest dimension; or in multiple ipsilateral
lymph nodes, none >6 cm in greatest dimension; or in bilateral or contralateral lymph nodes, none >6 cm in greatest
dimension

Metastasis in a single ipsilateral lymph node >3 c¢m but not more than 6 cm in greatest dimension

Metastasis in multiple ipsilateral lymph nodes, none >6 cm in greatest dimension

Metastasis in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension

Metastasis in a lymph node >6 cm in greatest dimension

Distant metastasis (M)

MO
Ml

No distant metastasis
Distant metastasis
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